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Programming Challenges and Solutions 

Message Passing Programming  
Divide up domain in pieces 
Each compute one piece 
Exchange (send/receive) data 
 
PVM, MPI, and many libraries 

Global Address Space Programming 
Each start computing 
Grab whatever you need whenever 
 
Global Address Space Languages 
and Libraries  
 5-10% of NERSC apps use some kind of PGAS-like model 



Shared Memory vs. Message Passing 

Shared Memory 
• Advantage: Convenience 

- Can share data structures 
- Just annotate loops 
- Closer to serial code 

• Disadvantages 
- No locality control 
- Does not scale 
- Race conditions 

Message Passing 
• Advantage: Scalability 

- Locality control 
- Communication is all 

explicit in code (cost 
transparency) 

• Disadvantage 
- Need to rethink data 

structures 
- Tedious pack/unpack code 
- When to say “receive” 



PGAS: Partitioned Global Address Space 

• Global address space: thread may directly read/write remote data  
•  Hides the distinction between shared/distributed memory 

• Partitioned: data is designated as local or global 
•  Does not hide this: critical for locality and scaling 
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Science Across the “Irregularity” Spectrum 

Massive 
Independent 

Jobs for 
Analysis and 
Simulations 

Nearest 
Neighbor 

Simulations 

All-to-All 
Simulations 

Random 
access, large 
data Analysis 

Data analysis and simulation 



Hello World in UPC 
• Any legal C program is also a legal UPC program 
•  If you compile and run it as UPC with P threads, it will 

run P copies of the program. 
• Using this fact, plus the a few UPC keywords: 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 
 
main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 



Example: Monte Carlo Pi Calculation 
• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

- Area of square = r2 = 1 
- Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
•  If x2 + y2 < 1, then point is inside circle 
• Compute ratio: 

- # points inside / # points total 
-  π = 4*ratio  

r =1 



Each thread calls �hit� separately 

Initialize random in 
math library 

Each thread can use 
input arguments 

Each thread gets its own 
copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, hits, trials = 0; 
    double pi; 
 
    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 
 
    srand(MYTHREAD*17); 
 
    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 



Helper Code for Pi in UPC 
• Required includes: 
    #include <stdio.h> 
    #include <math.h>  
    #include <upc.h>  

• Function to throw dart and calculate where it hits: 
  int hit(){ 
    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 



Shared vs. Private 
Variables!



Private vs. Shared Variables in UPC 
• Normal C variables and objects are allocated in the private 

memory space for each thread. 
• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 

• Shared variables may not have dynamic lifetime, i.e., may 
not occur in a function definition, except as static.   

Shared 
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Private 
mine:  mine:  mine:  

Thread0   Thread1                                       Threadn 

ours:  



Pi in UPC: Shared Memory Style 
• Parallel computing of pi, but with a bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      } 
   } 

shared variable to 
record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 



UPC Synchronization 
•  UPC has two basic forms of barriers: 
-  Barrier: block until all other threads arrive  

 upc_barrier 
-  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  UPC also has locks for protecting shared data: 
-  Locks are an opaque type (details hidden):       

upc_lock_t *upc_global_lock_alloc(void); 

-  Critical region protected by lock/unlock: 
void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 



Pi in UPC: Shared Memory Style 
• Like pthreads, but use shared accesses judiciously 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 

other private variables 

one shared scalar variable 



Pi in UPC: Data Parallel Style w/ Collectives 
• The previous version of Pi works, but is not scalable: 

- On a large # of threads, the locked region will be a bottleneck 
• Use a reduction for better scalability 
   
  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 



Shared Arrays Are Cyclic By Default 
• Shared scalars always live in thread 0 
• Shared arrays are spread over the threads 
• Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]               /* 2 or 3 elements per thread */ 

•  In the pictures below, assume THREADS = 4 
- Blue elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked 
by columns 

Think of linearized 
C array, then map 
in round-robin 

z is not 



Pi in UPC: Shared Array Version 
• Alternative fix to the race condition  
• Have each thread update a separate counter: 

- But do it in a shared array 
- Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors, 
just as hits was 

update element 
with local affinity 



Global Memory Allocation  
shared void *upc_alloc(size_t nbytes); 

  nbytes : size of memory in bytes 
•  Non-collective: called by one thread  
•  The calling thread allocates a contiguous memory space in the shared 

space with affinity to itself.  
 shared [] double [n] p2 = upc_alloc(n&sizeof(double); 

void upc_free(shared void *ptr); 
•  Non-collective function; frees the dynamically allocated shared 

memory pointed to by ptr 

Shared 
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Distributed Arrays Directory Style 
• Many UPC programs avoid the UPC style arrays in 

factor of directories of objects 
typedef shared [] double *sdblptr; 
shared sdblptr directory[THREADS]; 
directory[i]=upc_alloc(local_size*sizeof(double)); 

directory 

• These are also more general: 
• Multidimensional, unevenly distributed 
• Ghost regions around blocks 

physical and 
conceptual 
3D array 
layout 



UPC Compiler Implementation 

UPC-to-C translator 

•  Pros: portable, can use any 
backend C compiler 

•  Cons: may lose program 
information between the two 
compilation phases 

•  Example: Berkeley UPC 

UPC-to-object-code compiler  

•  Pros: better for implementing 
UPC specific optimizations 

•  Cons: less portable 
•  Example: GCC UPC and 

most vendor UPC compilers 

UPC code 

UPC source-to-source 
translator 

C code 

UPC code 

UPC source-to-object-
code complier 

Machine Instr. 



New in UPC 1.3 Non-blocking Bulk Operations 

#include<upc_nb.h>00
0
upc_handle_t0h0=00
upc_memcpy_nb(shared0void0*0restrict0dst,00
00000000000000shared0const0void0*0restrict0src,0
00000000000000size_t0n);0 
void0upc_sync(upc_handle_t0h);00000000//0blocking0wait0
int0upc_sync_attempt(upc_handle_t0h);0//0nonDblocking00
0
0
0
 

Important for performance:  
•  Communication overlap with computation 
•  Communication overlap with communication (pipelining) 
•  Low overhead communication  



One-Sided in GASNet


•  A one-sided put/get message can be handled directly by a network 
interface with RDMA support 
- Avoid interrupting the CPU or storing data from CPU (preposts) 

•  A two-sided messages needs to be matched with a receive to 
identify memory address to put data 
- Offloaded to Network Interface in networks like Quadrics 
- Need to download match tables to interface (from host) 
- Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 



Why Should You Care about PGAS?
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Cray XE6 Application Performance
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Machine Challenge #3: Bisection Bandwidth 

DEGAS Overview"

•  Avoid congestion at node interface: allow all cores to communicate 
•  Avoid congestion inside global network: spread communication 

over longer time period (start early, send often) 
•  Synchronize only when needed: sometimes fine-grained, 

sometimes one global barrier (after all incoming counts are 
reached) is best 
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⌅ Pros:
I Expose architectural sharing (one name space) - Memory

e�cient

⌅ Could we achieve optimal performance? Could we
communicate in a parallel region?

I Less application synchronization, but rarely used!
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Application Challenge: Fast All-to-All 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea!

chunk = all rows with same destination 

pencil = 1 row 

•  Three approaches: 
• Chunk:  

•  Wait for 2nd dim FFTs to finish 
•  Minimize # messages 

• Slab:  
•  Wait for chunk of rows destined for 1 

proc to finish 
•  Overlap with computation 

• Pencil:  
•  Send each row as it completes 
•  Maximize overlap and 
•  Match natural layout 

slab = all rows in a single plane with 
same destination 



FFT Performance on BlueGene/P


•  UPC implementation 
outperforms MPI 

•  Both use highly 
optimized FFT library 
on each node 

•  UPC version avoids 
send/receive 
synchronization 
•  Lower overhead 
•  Better overlap 
•  Better bisection 
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UPC 1.3 Atomic Operations

• More efficient than using locks when applicable 

• Hardware support for atomic operations are available, but 

upc_lock();0
update();0
upc_unlock();0

atomic_update();0vs 

Memory 

CPU 

GPU 

NIC 

Memory 

Atomic_CAS on uint64_t 

Atomic_Add on double 

Only support limited operations 
on a subset of data types. e.g., 

Atomic ops from different 
processors may not be 
atomic to each other 



• Expand the class of Exascale applications to those involving 
random access to large “shared” memory 
- Hash tables 
- Graph algorithms 

• Problems that currently “require” shared memory 
• Genome assembly example 

Application Challenge: Random Access to Large Memory
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Contig 1: GATCTGA 

Contig 2: 
AACCG 

Contig 3: 
AATGC 

“Big Data” problems? 
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Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, Lenny 
Oliker, Dan Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, SC’15 
 
.""

  HipMer (High Performance Meraculous) Assembly Pipeline


Distributed Hash Tables in PGAS 
•  Remote Atomics, Dynamic Aggregation  
•  Software Caching  (sometimes) 
•  Clever algorithms (bloom filters, locality-aware hashing) 



DEGAS is a DOE-funded X-Stack with Lawrence Berkeley 
National Lab, Rice Univ., UC Berkeley, and UT Austin.    

Led by Yili Zheng (LBNL) 
with Amir Kamil (U Mich) 
 
And host of others: Paul Hargrove, 
Dan Bonachea, John Bachan,  
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UPC++:  PGAS with “Mixins”


•  Default execution model is SPMD, but 

DEGAS 

•  UPC++ uses templates (no compiler 
needed) 
!shared_var<int>!s;!!
!global_ptr<LLNode> g;  
!shared_array<int>!sa(8);!

s: 16 

g:  

x: 5 
y:  

x: 7 
y: 0 

sa:  

 18                  63           27 

•  Remote methods, async 
!!async(place)!(Function!f,!T1!arg1,…);!
!!wait();!!!!!//!other!side!does!poll();!

•  Interoperability is key; UPC++ can be use with OpenMP or MPI 

•  Research in teams for 
hierarchical algorithms and 
machines 

!!!!teamsplit!(team)!{!...!}!
!



UPC++ Performance Close to UPC "



Difference between UPC++ and 
UPC is about 0.2 µs (~220 cycles) 
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Locality Control On-Node is Important

Optimizations: 
• Blocked vs. cyclic (default) array layout 
• Use private pointer to the thread block in shared array 

 double* my_x = (double*)(x + MYTHREAD * BSIZE)!



Bulk Communication with One-Sided Data Transfers

//0Copy0count0elements0of0T0from0src0to0dst0
upcxx::copy<T>(global_ptr<T>0src,00000000000000000000000000
000000000000000global_ptr<T>0dst,00

000000000000size_t0count);0
0

//0NonDblocking0version0of0copy0
upcxx::async_copy<T>(global_ptr<T>0src,0

000000000000000000global_ptr<T>0dst,00
000000000000000000size_t0count);0
0

//0Synchronize0all0previous0asyncs0
upcxx::async_wait();0

Similar to upc_memcpy_nb extension in UPC 1.3 
36"



Dynamic Global Memory Management


• Global address space pointers (pointer-to-shared) 
global_ptr<data_type>0ptr;0
0

• Dynamic shared memory allocation 
global_ptr<T>0allocate<T>(uint32_t0where,0
00000000000000000000000000size_t0count);0
void0deallocate(global_ptr<T>0ptr);0
0
Example: allocate space for 512 integers on rank 2 
global_ptr<int>0p0=0allocate<int>(2,0512);0

Remote memory allocation is not 
available in MPI-3, UPC or SHMEM. 

37"



Async Task Example


#include0<upcxx.h>0
0
void0print_num(int0num)0
{00
00printf(“myid0%u,0arg:0%d\n”,0MYTHREAD,0num);00
}0
0
int0main(int0argc,0char0**argv)0
{00
00for0(int0i0=00;0i0<0upcxx::ranks();0i++)0{0
0000upcxx::async(i)(print_num,!123);!!
!!}0
00upcxx::async_wait();!//0wait0for0all0remote0tasks0to0complete0
00return00;0
}0

38"



Async with C++11 Lambda Function


for0(int0i0=00;0i0<0upcxx::ranks();0i++)0{0
00//0spawn0a0task0expressed0by0a0lambda0function0
00upcxx::async(i)([]0(int0num)00
000000000000000000{0printf("num:0%d\n”,0num);0},00
0000000000000000001000+i);0//0argument0to0the0λ0function0
}0
upcxx::async_wait();0//0wait0for0all0tasks0to0finish0

mpirun –n 4  ./test_async!
!
Output: !
num:  1000 !
num:  1001 !
num:  1002 !
num:  1003 !

Function arguments and lambda-
captured values must be 
std::is_trivially_copyable. 

39"



Application Challenge: Data Fusion in UPC++
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•  Seismic modeling for energy applications 
“fuses” observational data into simulation 

•  With UPC++, can solve larger problems 

Cores: 48       192      768        3K       12K          

Distributed Matrix Assembly 
•  Remote asyncs with user-

controlled resource management 
•  Remote memory allocation 
•  Team idea to divide threads into 

injectors / updaters 
•  6x faster than MPI 3.0 on 1K nodes 
! Improving UPC++ team support 

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle global tomographic model 
using numerical seismic wavefield computations (F & R, 2014, GJI, extending F et  al., 2013, Science).  See F et al, 
IPDPS 2015 for parallelization overview. 

Note 
scale: 
>85% 
efficie
nt in 
worst 
case 



March 5, 2004"

Multidimensional Arrays in UPC++ (and Titanium)


• Titanium arrays have a rich set of operations 

• None of these modify the original array, they just create 
another view of the data in that array 

• You create arrays with a RectDomain and get it back 
later using A.domain() for array A 
- A Domain is a set of points in space 
- A RectDomain is a rectangular one 

• Operations on Domains include +, -, * (union, different 
intersection) 

translate restrict slice (n dim to n-1) 



Arrays in a Global Address Space for AMR


• Key features of UPC++ arrays 
- Generality: indices may start/end and any point 
- Domain calculus allow for slicing, subarray, transpose and 

other operations without data copies 
• Use domain calculus to iterate over interior: 
      foreach (idx, gridB.shrink(1).domain()) 
• Array copies automatically work on intersection 
      gridB.copy(gridA.shrink(1)); 

gridA gridB 

�restricted� (non-
ghost) cells  

ghost 
cells  

intersection (copied 
area) 

UPC++ arrays based on Titanium Arrays!

Useful in grid 
computations 
including AMR 



Mini-GMG in UPC++ uses high level array library 
for Productivity and Performance 

43"DEGAS 

•  “Fine-grained” like OpenMP 
•  “Bulk” like MPI with 1-sided 

communication;  
•  “Array” version uses multi-

dimensional array constructs for 
productivity and ~MPI performance 

•  Future runtime optimizations 
should close Array/Bulk gap 

“MG V-cycle” 

Stride 
N2 

Stride 
N 

Stride N2 

UPC++ arrays are convenient and optimize 
strided data accesses automatically 
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NWChem on GASNet


• Production chemistry code 

- 60K downloads world wide 

- 200-250 scientific application 
publications per year 

- Over 6M LoC, 25K files 

44"

Performance Analysis and Optimizations of NWChem

• High-performance 
computational chemistry code 
✴ Flagship DOE chemistry software 
✴ Developed at PNNL, LBL 

• 60K downloads world wide 

• 200-250 scientific application 
publications per year 

• Over 6M LoC, 25K files 

• Internal tasking model, memory 
management, and application 
checkpoint/restart. 

• Execution on 100K+ processors

2

NWChem

credit:nwchem-sw.org

Software Stack

global arrays

NWChem

armci

MPI + {portals, ofa, dmapp}

gasnet

global arrays

NWChem

armci

vector strided

heaps

NWChem was written in the early 1990s, has 25k files and 6m

lines of fortran. It contains its own internal tasking model, memory

management, and application checkpoint/restart.
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•  New version on GASNet for  
–  Improved performance 
–  Portability with other PGAS  

 



Application Challenge: Dynamic Load Balancing

• Static: Equal size tasks 

 
• Semi-Static: Tasks have 

different but estimable times 

 
• Dynamic: Times are not 

known until mid-execution 

Dynamic (on-the-fly) useful when: 
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…

…

…

      Load imbalance penalty > communication to balance 
Load balancing can’t solve lack of parallelism 

Regular meshes, dense 
matrices, direct n-body 

 

Adaptive and unstructured 
meshes, sparse matrices, tree-
based n-body, particle-mesh 
methods 

 

Search (UTS), irregular 
boundaries, subgrid physics, 
unpredictable machines 



•  Dynamic tasking option in UPC++ 
- Demonstrated with library version 

of Habanero 
- Combines with remote async 

! Dynamic load balancing library for 
domain-specific runtime in UPC++ 

Application Challenge: Dynamic Load Balance
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Private address space 

Global address space 

Multi-threading 

Local 
task 
queue 

Function shipping across nodes Multidimensional 
arrays 

void finish_spmd(std::function <void()>
lambda) {

// Start finish scope
allocate_finish_object ();
// Execute the lambda containing
// asynchronous tasks.
lambda ();
// Loop until no more pending tasks
// at global scope (both local and
// remote)
while(true) {

// Pop and execute tasks from out_deque
while(true) {

void* task = pop_out_deque ();
if(task == NULL) break;
else {

// Execute lambda function in the task.
// This lambda contains UPC ++ calls ,
// details in Figure 7 and 8.
async_wrapper(lambda ); // see Figure 6

} // end else
} // end while

// Send and receive remote tasks in
// UPC ++ queue
void* incoming_remoteTask = advance_upcxx ();
if(incoming_remoteTask != NULL) {

// Wrap it as local async which will
// push this task to in_deque
async ([=]() {

// Call UPC ++ library to execute this task.
execute_upcxx(incoming_remoteTask );

}); // end async
} // end if
tasks_count = incoming_tasks - (outgoing_tasks

+ total_local_pending_tasks );
// Find total global pending tasks
allreduce (& tasks_count ,

&global_tasks_count , SUM);
if(global_tasks_count ==0) break;

} // end while
// end finish scope
free_finish_object ();

} // end finish_spmd

Figure 10: Runtime implementation of finish_spmd
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Figure 11: Weak scaling performance using HabaneroUPC++
and varying number of work-stealing worker threads per
place.
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Beyond Put/Get: Event-Driven Execution 

• DAG Scheduling in a distributed (partitioned) memory context 
• Assignment of work is static; schedule is dynamic 
• Ordering needs to be imposed on the schedule 

- Critical path operation: Panel Factorization 
• General issue: dynamic scheduling in partitioned memory 

- Can deadlock in memory allocation 
- “memory constrained” lookahead 
 

some edges omitted 

Uses a Berkeley extension to 
UPC to remotely synchronize 
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Example: Building A Task Graph 

using namespace upcxx; 
event e1, e2, e3; 

t1 

e1 

t2 

t4 t3 

t5 

e3 

e2 

t6 

async(P1, &e1)(task1); 
async(P2, &e1)(task2); 
async_after(P3, &e1, &e2)(task3); 
async(P4, &e2)(task4); 
async_after(P5, &e2, &e3)(task5); 
async_after(P6, &e2, &e3)(task6); 
async_wait(); // all tasks will be done  
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One-sided communication works everywhere


Support for one-sided communication (DMA) appears in: 
•  Fast one-sided network communication (RDMA, Remote 

DMA) 
•  Move data to/from accelerators 
•  Move data to/from I/O system (Flash, disks,..) 
•  Movement of data in/out of local-store (scratchpad) memory 

PGAS programming model 
 
   *p1 = *p2 + 1; 
   A[i] = B[i]; 
 
   upc_memput(A,B,64); 
 
It is implemented using one-sided 
communication: put/get 



Single Program Multiple Data 
(SPMD) is too restrictive 

Hierarchical machines and Applications


• Option 1: Dynamic parallelism creation 
- Recursively divide until… you run out of work (or hardware) 
- Runtime needs to match parallelism to hardware hierarchy 

• Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++) 
- Hardware threads can be grouped into units hierarchically 
- Add dynamic parallelism with voluntary tasking on a group 
- Add data parallelism with collectives on a group 
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•  Hierarchical memory 
model may be necessary 
(what to expose vs hide) 

•  Two approaches to 
supporting the 
hierarchical control 



Summary 

• UPC is a mature language with multiple implementations 
- Cray compiler 
- gcc version of UPC:   http://www.gccupc.org/ 
- Berkeley compiler: http://upc.lbl.gov 

•  Language specification and other documents 
https://code.google.com/p/upc-specification 
https://upc-lang.org 

• UPC++ 
- Newer “language” under development 
- Adds dynamic parallelism on top of SPMD default 
- Powerful Multi-D arrays 
- Hierarchical parallelism mapped to machine 
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